The engulfment process of programmed cell death in caenorhabditis elegans.
نویسندگان
چکیده
Programmed cell death involves the removal of cell corpses by other cells in a process termed engulfment. Genetic studies of the nematode Caenorhabditis elegans have led to a framework not only for the killing step of programmed cell death but also for the process of cell-corpse engulfment. This work has defined two signal transduction pathways that act redundantly to control engulfment. Signals expressed by dying cells probably regulate these C. elegans pathways. Components of the cell-corpse recognition system of one of the C. elegans pathways include the CED-7 ABC transporter, which likely presents a death ligand on the surface of the dying cell; the CED-1 transmembrane receptor, which recognizes this signal; and the CED-6 adaptor protein, which may transduce a signal from CED-1. The second C. elegans pathway acts in parallel and involves a novel Rac GTPase signaling pathway, with the components CED-2 CrkII, CED-5 DOCK180, CED-12 ELMO, and CED-10 Rac. The cell-corpse recognition system that activates this pathway remains to be characterized. In C. elegans, and possibly in mammals, the process of cell-corpse engulfment promotes the death process itself. The known mechanisms for cell-corpse engulfment leave much to be discovered concerning this fundamental aspect of metazoan biology.
منابع مشابه
Engulfment pathways promote programmed cell death by enhancing the unequal segregation of apoptotic potential
Components of the conserved engulfment pathways promote programmed cell death in Caenorhabditis elegans (C. elegans) through an unknown mechanism. Here we report that the phagocytic receptor CED-1 mEGF10 is required for the formation of a dorsal-ventral gradient of CED-3 caspase activity within the mother of a cell programmed to die and an increase in the level of CED-3 protein within its dying...
متن کاملGenes required for the engulfment of cell corpses during programmed cell death in Caenorhabditis elegans.
After programmed cell death, a cell corpse is engulfed and quickly degraded by a neighboring cell. For degradation to occur, engulfing cells must recognize, phagocytose and digest the corpses of dying cells. Previously, three genes were known to be involved in eliminating cell corpses in the nematode Caenorhabditis elegans: ced-1, ced-2 and nuc-1. We have identified five new genes that play a r...
متن کاملPii: S0168-9525(98)01573-x
410 Copyright © 1998 Elsevier Science Ltd. All rights reserved. 0168-9525/98/$19.00 PII: S0168-9525(98)01573-X The elimination of unwanted cells by programmed cell death is an important developmental and homeostatic process in multicellular organisms, including the nematode Caenorhabditis elegans1. During the development of the C. elegans hermaphrodite, 1090 cells are generated, of which 131 un...
متن کاملCaenorhabditis elegans genes required for the engulfment of apoptotic corpses function in the cytotoxic cell deaths induced by mutations in lin-24 and lin-33.
Two types of cell death have been studied extensively in Caenorhabditis elegans, programmed cell death and necrosis. We describe a novel type of cell death that occurs in animals containing mutations in either of two genes, lin-24 and lin-33. Gain-of-function mutations in lin-24 and lin-33 cause the inappropriate deaths of many of the Pn.p hypodermal blast cells and prevent the surviving Pn.p c...
متن کاملNUC-1, a caenorhabditis elegans DNase II homolog, functions in an intermediate step of DNA degradation during apoptosis.
One hallmark of apoptosis is the degradation of chromosomal DNA. We cloned the Caenorhabditis elegans gene nuc-1, which is involved in the degradation of the DNA of apoptotic cells, and found that nuc-1 encodes a homolog of mammalian DNase II. We used the TUNEL technique to assay DNA degradation in nuc-1 and other mutants defective in programmed cell death and discovered that TUNEL labels apopt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Annual review of cell and developmental biology
دوره 20 شماره
صفحات -
تاریخ انتشار 2004